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A Soft-Input Soft-Output A1’P Module for Iterative Decoding of Concate-
nated Codes
S. Benccletto,  D. Divsalar, Cl. Mcmtorsi, ml Ii. Pollara

Abstract — Concatcnateci  coding schemes consist of the combination of two or more simple
co flslil[4ctlt  rflcoder.v  and intcrlcavcrs. The parallel concatenation known as “tLlrbo code”
has been shown to yiclcl  remarkable cociing gains close to theoretical limits, yet admitting a
relatively simple iterative clccocling  tcchniqLlc.  The recently proposed serial concatenation of
interleaved codes may offer superior performance to that of tLlrbo codes. in both coding
schemes, the core of the iterative decoding strLlcturc is a soft-input soft-oLltput  (S1S0) a
po.steriori  probability (APP) moclulc.  In this letter, wc describe the S1S0 APP module that
upclatcs the a postetiori  probabilities corresponding to the inpLlt  and the oLltpLlt bits, of a code,
and show how to embed it into an itcr~itivc  dccoclcr for a new hybrid concatenation of three
codes, to fully exploit the benefits of the proposccl S1S0 APP modLllc.

lntrmluction — concatenated coding schemes have been studied by Fomcy [ 1 ] as a class
of codes whose probability of error decreased exponentially at rates less than capacity, while
(iccoding  complexity incrcasccl only algebraically. ]nitially motivated only by theoretical re-
search interests, concatenated codes have since then evolved as a standard for those applications
where very high coding gains arc needed, sLlch as (deep-)spacc applications.

The recent proposal of “tLlrbo codes” [2], with their astonishing performance close to
the theoretical Shannon capacity limits, have once again shown the great potential of coding
schemes formed by two or more COCICS working in a concurrent way. Turbo codes :ire p(~mllel
concatenated  commlfltio~zal  codes, where the information bits arc encoded twice. Once by
a recursive systematic convolutional code acting cm the original information sequcncc,  and
a second time by a (possibly different) rcc Llrsivc convolLltional  code acting on a pcrnlLlted
information scqLlencc. ‘Ilc code scqLlcnces  arc formed by the information bits, followed
by the parity check bits gcncratccl by both cncoclcrs. [Jsing the same ingredients, namely
convo]ut  ional encoders and i ntedcavcrs,  scri(lli.y  coIIcatcIzafed comwlutimal  codes have been
shown to yield performance comparable, ancl in some cases superior, to turbo codes [3]. A
third choice is a hybrid concatenation of three or more cocles. In this letter, wc consider as an
example of hybrid concatenation, the parallel concatenation of a convolLltional  co(ie with two
serially concatenated convolutional codes.

All concatenated cocling  schemes admit a SLlbOptilllLllll  decocling  scheme based on the
iterative LISC of CJ postcriori  probability algorithms [4] applied to each constitLlcnt  code. The
pLirposc of this Icttcr is the description of a soft-input soft-oLltpL]t  module (denoted by S1S0)
that implements the APP algorithm in its basic form for the iterative decoding of [i concatenated
coding scheme. (Wc prefer to usc the APP terminology instead of MAP (maximum aposferiori)
since the S1S0 nlociLilc is just conlpLlting  probabilities rather than their maxin~Llnl.)

The encoclcr  — The S1S0 modLllc  is a four-port device, with two inpLlts  :ind two oLltputs.  It
accepts as inpL1ts the probability distribLltions  of the information and code symbols labeling
the edges of the COCIC trellis, and forms as outputs an Llpdatc of these distribLltions  based upon
the code constraints. The algorithm for the S1S0 nlodLllc  works on the trellis representation
of the code (every code admits a trellis rcprcscnt:ition).  It can be a time-invariant or tin~e-
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varying trellis, and thus the algoriihm can k used for both block and convolutional codes. In
the following, for simplicity of exposition, wc will refer to the case of himry tit~z(~-itz}’(~ri(l}zt
[:[jtllj[)114tioilol  codes with cock rate k. /11 ~,.
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Figure 1: Illr tw[lis ettcmkr

In Fig. 1 wc show a frcllis c}zcodeI,  charactcrizcci  by the following quantities. (Capital
letters U, C, S, E will denote random variables, and lower case lctkm u, c,s, e their realiza-
tions. The subscript k will denote  a discrete time, defined  on the time index set K. The letters
1, and O will refer to the input and oLltpLlt of the S1S0 nlociLlle,  respcctivcl  y<)
1. U = (uk)kCK is the sequences of inpllt  symbols,  dci~ncd OVCr a tinlc index set ~ (finite
or inf’inite)  and drawn from the alphabet U = {u 1, . . . . [{N, }. Each inpltt  symbol Uk consists
of k,, bits U; , j=l,2 ,..,L-,, with realization I(J e {O, l}. To the sequence of input symbols, wc
associate the sequence of a priori probability y distribLitions  I>(u; 1) = (Pk (u; I))k CK, where
MJ; 0 = r~:l.l  m141; I).
2. C == (CL )kCK is the sequences of output, or code, symbols, defined over the same time
index set K, and drawn from the alphabet ~ = {cl, . . . . (’NO ). Each inpLlt  symbol C~ consists
of r~,, bits C( , j= 1,2,..,} 2,, with realization CJ E {0, I]. TO the scqL1ence of oLJtPLlt  sYn~bo~s?
we associate the scqLlcncc of [I priori  probability distributions ]](c; ]) =: (P~ (c; ] ))L<K,  where
Pk (c; 1) may be represented as PL (c; l) == ~l~j:, H (c~; ~).

The assumption that a /)rioti input distributions of symbols can be represented as a the
prodLlct  of marginal distribLltions  of bits is valid when bit interlcavers  rather than symbol
intcrlcavcrs  are used in an iterative decoding scheme for concatenated codes. one should not
usc PL (c; 1) as a product for those cncoclcrs in a concatenated system where the output C in
Fig. 1 is connected to a ]~o[]l>illary-illj>Llt  channel. For binary-input mcnmryless  channels, the
probability Pk (c; 1) may be written :IS a procluct.

The trellis section –- The dynamics of a time-invariant convolutional code is completely
specified by a si nglc trellis section, which describes the transitions (“edges”) between the
states of the trellis at time itlstants k and k + 1.

A trellis section is charactcrizcc~  by: A set of N states ~ = (.$1, . . . . .$N ). The state of
the trellis at time k is Sk = s, with s E c!; A SC( of N . NI edges obtained by the Cartesian
plOdLICtf=~Xu= {~j, ..., CN.N,  } which represent all possible transitions between the
trellis states.

To each edge c E 8 the following functions are associated (see Fig. 2): The starting
state SLS (e) (the projection of e onto c!); ‘1’hc ending state .![’; (c); The input symbol u(e) (the
projection of c onto U); The OLltpLl[ symbol (“(e).

The relationship between these functions dcpcncls on the particularcncodcr.  As an example,
in the case of systematic encoders (s~’ (e), c(e)) also identifies the edge since H(C) is unique] y
determined by c(e). III the following, wc only assLInlc that the pair (s’s(e), u(e))  uniquely
identifies the ending state s’;(c);  this assumption is always fulfilled, as it is equivalent to say
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that, given Ihc initial trellis state, there is a one-to-one correspcmdcncc  bctwccn  input scqLmces
and state Scqllcnccs.

1 I

Figure 2: AI1 edge of the trellis .wctim

The S1S0 algorithm -– The Soft-]nput  soft-Output (S1S0) Jnodu]e is a foLlr port device that
accepts at the inpLlt the sequences of probability distribLlticm I](c: 1) and I’(u; 1), and outputs
the scqLmnces of probability clistribLltions  1’(c; O) and P(u; 0) based on its inpLlts  and on its
knowledge of the trellis section (or code, in general).

1’(C;I)  - - - *r---- Iyc;o)
Slso

1’(1(;1) --  F - 1’(11;0)

let the time index set K = {1, . . . . }Z }. The algorithm by which the S1S0 operates in evaluating
the oLltpLlt distribLltions  will bc explained in two steps. First, we consider the following
algorilhm:
1. The output probability distribLltions  ~k (c~; O) and ~k (uj; O) for the ~th bit within each
symbol at time k are conlpLltcd as

and

respectively.
2. The qLlantitics

c(e); I] Ilk[L$F; ((’)] (1)

r(f?); l]llk[.$ ‘;((’)] (2)

Ak(.)fork= l,..., ]) and Bk(.) for k = H – 1, . . . . 0 arc obtained through
the ~omwrd and bcwkward  recursions, respect i VCI y, as

A L ( s )  =  ~ AL. ,[S’y(r)]PLIII(e); l] Pk[c(e);  1] (3)
C;.rt (C)=..s

BL(.Y) =  ~ Bk, l[S’’(C)]PL, 1[[4((’); I]Pk., I[c(e); 1] (4)
(,:,r~(,,)=.f

with initial values Ac~(s) = 1 if s = S0 ancl Ao(.v) = O otherwise; 11,, (s) = 1 if s’ =  .$1

and 1~,1 (.s) = O otherwise. The qLlantitics  l~c.j, }~,,1  arc normalization constants sLlch that
~,., ~k(c’;  O) = 1 and ~,,, ~k(uj; O) = 1, rcspcctivcly.
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From expressions (1) and (2), it is apparent that the qLlantities  Pk[cj (e); 1] in the first
equation and Pk [Mj (e.); 1 ] in the second do not depend  on c, by clefinit  ion of the summation
indices, and thus can be extracted from tllc summations. Thus, defining the new quantities

P~ (CJ ; 0) Q II(.j *; ~tlld  l’~ (llJ ; 0) Q 11{,, ~k~~~,;j~j  , where ~l(.~. Hl,; arc normal izat ion

constants such that ~,., f’k(cj;  0) = 1 ancl ~1,, Pk(uj; 0) = 1, it can be easily verified that
Pk (cJ; O) and Pk (uJ; 0) can be obtainccl  throLrgh the expressions

(5)

(6)

respectively, where the A’iY and B’s satisfy the same recursions previously introdLrccd in (3)
ancl (4). For those encoders, in a concatcnatccl  coded scheme, whose outputs arc connected to
the channel (as opposed to the inpLlt of another encoder), cq. (5) needs not be calculated. To
keep the expressions general, as it is seen from (3), (4) and (6), Pk [c(e); 1] is not represented
as a product.

The new probability y distributions Pk (cJ; O), PL (u]; 0) arc conlpLrtcd based on the code
constraints and obtained using the probability distributions of all bits of the sequence, except
the distributions Pk (c;; 1), Pk (uJ; 1) of the ~-th bit within the k-th symbol respectively. In
the literature of “turbo ciecoding”, PA (IiJ; O), Pk (c-J: O) would be called ex~ri~z.tic  /}i/ info~-
maliolr. They represent the “acldccl  valLrc”  of the S1S0 module to the “cl priori” distributions
l’k(f4J; ]), Pk(cl; 1). Basing the S1S0 algorithm on l’k(.;  0) instead of on ~k(.; 0) simplifies
the block diagrams, an(i related software anci har(iware,  of the iterative dccocling  schemes. In
addition, in the iterative decoding, the probability Pk(.; 0), and not FL (o; 0), from one S1S0
module should be used as an input say Pkt (O; 1) to another S1S0 nlodLIlc. For these reasons,
wc will consider as S1S0 algorithm the one cxprcssc~i  by (5) and (6). ‘1’hc S1S0 module is
then represented as in Fig. 3. Applying the “log” operation to both sides of (3), (4), (5), and
(6), results in the “Ad(iitivc (log) APP S1S0”.

Previously proposed algorithms were not in a form sLlitab]c  to work with a general trellis
code. Most of them assLIn~cd binary input symbols, some assLrnlccl  also systematic codes,
and none (not even tile original BCJR algorithm 14]) coLl]d cope with a trellis having parallel
edges.  As it can be noticed from all sLrnln~ations  involved in the eqLrations  that define the S1S0
algorithm, wc work on trellis edges, rather than on pairs of states, and this makes the algorithm
completely general, and capable of coping with parallel edges and, also, encoders with rates
greater than one, like 111OSC  encoLrntcrcd  in some concatenated schemes.

An application of the S1S0 module  –- We show in this section an example of application of
the S1S0 nlodLr]c  end?cdcic(i  into a proposcci  iterative decoding scheme, shown in Fig. 4, for
decoding of a new hybricl concatenation of three convolutional codes, which is also shown in
Fig. 4. The overall rate is 1/4, sincx the information bits of the systematic recursive parallel



encoder are not transmitted. As it is seen from Fig. 4, all foLtr ports of the S1S0 oLltcr  modLl]e
arc used.
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Figure  4: (a) – A rate 1/4 IIybvid collc~itctl[ited  code, aiId (b) – its iterative dccocliilg

Acknowledgment — This research has been partially supported by NATO Llnder  Research
Grant CRG 951208, and partially carried oLlt at the Jet PropLllsiorl  Labor:itory,  California Insti-
tute of Technology, LlndcJ’  a contract with the National AcronaLltics  ami Space Administrate ion.

S. Ihmedetto,  and G. Montorsi  (i’olircctzico  di l?]titlo, [f[t/y)
D. Divsalar  and F. Pollara  (Jet Propl{lsiotl  I.aboratoty, C[(lij{)twia  lti.rtitutc of 7idI~mIogM  USA)

References

[1]

[4]

G. Il. Fotmey Jr., CorK:atctMted  Code.V, M. I.”l’., Cambridge, MA, 1966.

C. 13crrou,  A. GlavicLlx, and P. Tl~itil~l~ljsl~illl:t, “Near Shannon Limit Error-Correcting
Coding and Decoding: TLtrbo-Codes”, in Pmceedilz:.s  oj_ ICC ’93, Geneva, S wit zcrland,
May 1993, pp. 1064-1070.

S. Bcnedctto,  D. lXvs:dar,  G. Montorsi,  and l;. Pollara, “Serial Concatenation of Inter-
leaved Codes: Performance Analysis, Design, and ltcrativc  Decoding,” TDA Progwss
Report  42-/26, Apti/-./f//zc  /996, Jet Propulsion I.aboratory,  Pasadena, California, pp. 1 –
26, August 15, 1996. http://edms-www.jpl.  nasa.gov/tda/progress-reporU42-l  26/1 26 D.pdf

L.R. Bahl, J. Cock,  F. Jc]inck, aJKl J. Raviv. “Optinlal  Decoding  of Linear  Codes
for Minimizing Symbol Error Rate”. IEEE Ikllmlctiom 011 It! fottwttiotl  Thmty, pages
284-287, March 1974.


